

Highlights from FHWA's 2023 National Bridge Inventory Data

- The state has identified needed repairs on 20,600 bridges.
- Over the life of the IIJA, Oklahoma will receive a total of \$288.0 million in bridge formula funds, which will help make needed repairs.
- Oklahoma currently has access to \$115.2 million of that total, and has committed \$23.7 million towards 12 projects as of June 2023.
- Of the 22,872 bridges in the state, 1,815, or 7.9 percent, are classified as structurally deficient. This means one of the key elements is in poor or worse condition.
- This is down from 2,352 bridges classified as structurally deficient in 2019.

Bridge Inventory

	All Bridges			Structurally Deficient Bridges		
Type of Bridge	Total Number	Area (sq. meters)	Daily Crossings	Total Number	Area (sq. meters)	Daily Crossings
Rural Bridges						
Interstate	603	572,365	8,658,611	0	0	0
Other principal arterial	1,407	1,156,576	7,698,593	7	12,137	34,150
Minor arterial	1,209	811,863	3,704,276	11	10,742	42,240
Major collector	7,081	2,272,665	6,115,978	508	108,104	209,829
Minor collector	6	9,532	3,635	1	4,132	1,400
Local	9,204	1,398,448	1,838,101	1,121	118,513	165,395
Urban Bridges						
Interstate	551	938,046	19,806,489	2	3,731	145,100
Freeway/expressway	423	540,199	11,248,640	3	2,568	41,900
Other principal arterial	360	417,297	4,150,238	3	1,378	29,794
Minor arterial	708	458,207	4,779,119	54	24,084	377,580
Collector	580	450,270	3,460,728	47	31,433	217,611
Local	740	172,621	1,260,698	58	14,467	43,150
Total	22,872	9,198,090	72,725,112	1,815	331,289	1,308,149

Proposed Bridge Work

Type of Work	Number	Cost (millions)	Daily Crossings	Area (sq. meters)
Bridge replacement	14,804	\$15,441.3	44,165,709	6,832,057
Widening & rehabilitation	4,903	\$1,172.0	21,609,452	767,018
Rehabilitation	106	\$65.6	288,180	42,700
Deck rehabilitation/replacement				
Other work	787	\$164.6	835,295	132,690
Total	20,600	\$16,843.5	66,898,636	7,774,466

State Bridge Profile

Top Most Traveled Structurally Deficient Bridges in Oklahoma

County	Year Built	Daily Crossings	Type of Bridge	Location
Oklahoma	1959	99,100	Urban Interstate	I-240 over I-35 Under
Tulsa	1972	46,000	Urban Interstate	I-444 WB Ramp over I-244 Under
Tulsa	1978	34,000	Urban freeway/expressway	U.S. 75 over Creek
Oklahoma	1971	22,800	Urban minor arterial	NW 122nd St. over Spring Creek
Oklahoma	1974	22,500	Urban minor arterial	Macarthur Blvd. over N. Canadian River
Oklahoma	1952	22,000	Urban minor arterial	May Ave. over Northwest Expy Under
Oklahoma	1954	21,300	Urban minor arterial	SE 29th St(E1090) over Kuhlman Creek
Oklahoma	1942	20,500	Rural major collector	SE 29th St(1090) over Crutcho Creek
Oklahoma	1945	20,000	Urban minor arterial	S.W 59th Street over Lightning Creek
Oklahoma	1940	20,000	Urban minor arterial	NW 136th St. over Creek

About the data: Data is from the Federal Highway Administration (FHWA) National Bridge Inventory (NBI), downloaded on February 1, 2023. Note that specific conditions on bridges may have changed because of recent work or updated inspections.

Effective January 1, 2018, FHWA changed the definition of structurally deficient as part of the final rule on highway and bridge performance measures, published May 20, 2017 pursuant to the 2012 surface transportation law Moving Ahead for Progress in the 21st Century Act (MAP-21). Two measures that were previously used to classify bridges as structurally deficient are no longer used. This includes bridges where the overall structural evaluation was rated in poor or worse condition, or where the adequacy of waterway openings was insufficient.

The new definition limits the classification to bridges where one of the key structural elements—the deck, superstructure, substructure or culverts, are rated in poor or worse condition. During inspection, the conditions of a variety of bridge elements are rated on a scale of 0 (failed condition) to 9 (excellent condition). A rating of 4 is considered "poor" condition.

Cost estimates have been derived by ARTBA, based on 2020 and average bridge replacement costs for structures on and off the National Highway System, <u>published by FHWA</u>. Bridge rehabilitation costs are estimated to be 68 percent of replacement costs. A bridge is considered to need repair if the structure has identified repairs as part of the NBI, a repair cost estimate is supplied by the bridge owner or the bridge is classified as structurally deficient. Please note that for a few states, the number of bridges needing to be repaired can vary significantly from year to year, and reflects the data entered by the state.

Bridges are classified by FHWA into types based on the functional classification of the roadway on the bridge. Interstates comprise routes officially designated by the Secretary of Transportation. Other principal arterials serve major centers of urban areas or provide mobility through rural areas. Freeways and expressways have directional lanes generally separated by a physical barrier, and access/egress points generally limited to on- and off-ramps. Minor arterials serve smaller areas and are used for trips of moderate length. Collectors funnel traffic from local roads to the arterial network; major collectors have higher speed limits and traffic volumes and are longer in length and spaced at greater intervals, while minor collectors are shorter and provide service to smaller communities. Local roads do not carry through traffic and are intended for short distance travel.